i SNEAKY LABS

Sneaky Blockchain
Technical White Paper
For Developers

22/11/2024

Contents

L RS = T 0 1= 2
N I 4 o g Yo L ol s e 2
2. Technology Stack.....iiiiiiii ittt iiieeienseenneronsnonnanans 4
3. Core Architecture. ...ttt ittt i it ttitneeeeennnns 10
4. Services Layer and Technical Implementation.................... 22
5. Installation and Setup.....ciiiiiiiiiiiineieereeeesencanannnnns 25
6. Block Handling and Propagation.........cciiiiiiiiiinernnnnennnns 31
6. Security and Encryptionciiiiiiiiiii ittt nanans 39
8. Network Reliability and Worker Management...............cc.oo... 44
9. AI and Automation in Sneaky........eiiiiiiiiiinriinneronnnonnnns 48
10. Open Source and Community Engagement..........iiiiiiiierennnns 51
11. Obvious Best Practice.....ciiiiiiiiiiiiiiiiiiiiiiiiiinnnnnnnn, 54
12, CoNCIUSION . ¢ttt ittt ittt itinnneeeeonnnneeeennnnns 61
Get Started. ..o i i i it i ittt i e e 63
23 o 3 o = - T'o] 0 Y 64

This Paper

This is the second of two Sneaky white papers. The first covered
business aspects for managers. This technical paper targets
developers. We will expand it as our code evolves.

1. Introduction

1.1 Overview

Sneaky is a high-performance permissioned blockchain. It brings

three key improvements to distributed ledger technology:

e Enhanced efficiency
e Better scalability

e Minimal energy use

Sneaky differs from traditional blockchains. It eliminates
decentralized consensus. Instead, it uses a central clock node. This

clock orders and signs all transactions.

Security comes from cryptographic proofs rather than consensus. This

design creates two advantages:

e Faster data processing

e Lower resource consumption

These features make Sneaky ideal for businesses needing fast, cost-

effective blockchain solutions.

1.2 Objectives and Vision

Sneaky prioritizes three core elements:

e Technical accuracy
e System reliability

e Industry best practices

Every system component undergoes rigorous testing. The platform

handles heavy workloads through:

e C(Clear workflows
e Strong encryption

e Stable blockchain environment
This approach delivers:

e High security
e C(Consistent performance
e Easy business integration

e Future-ready scalability

From an acquisition standpoint, Sneaky follows clear strategic

principles:

e Adherence to technical standards
e Transparent development practices
e Enterprise-ready architecture

e Seamless tech firm integration

1.3 Core Principles

Technical Correctness and Verification

Sneaky maintains strict technical accuracy. The system includes:

e Comprehensive testing protocols
e Verified reliability metrics
e Cryptographic identity checks

e Validated node interactions
This verification ensures:

e System security

e Operational reliability

e C(Critical application standards
Best Practices and Industry Standards

Sneaky implements recognized standards across all areas:

e Security protocols
e Scaling mechanisms

e Data handling procedures

Key technical features include:

e Elliptic curve cryptography (ECC)
e Optional post-quantum security
e Energy-efficient clock architecture

e Open-source transparency

2. Technology Stack

Sneaky uses modern technologies. These ensure energy efficiency,
enterprise-readiness, and cost-effectiveness. Each component boosts

speed, security, and development efficiency.

2.1 Core Languages and Frameworks

C# and .NET

e Primary development platform

e Provides stable, high-performance foundation
e Offers robust library support

e Enables modular design

e Suits enterprise requirements

Blazor

e Powers all block explorers

e Enables interactive web interfaces
e Handles node setup workflows

e Manages user registration

e Monitors transactions

e Uses server-side rendering for speed

2.2 Storage and Data Management

sQLite

e Manages local node storage
e Handles transaction pools
e Maintains block pools

e Stores chain data

e Provides reliability with simplicity
Azure Blob Storage (Optional)

e Supports cloud deployments
e Ensures data persistence
e Enables large-scale access

e Offers geographic redundancy

2.3 Communication Protocols

Sneaky uses modern, proven protocols for network communication.
These choices ensure reliable operation. They maintain system

simplicity.
gRPC Communication

Sneaky uses gRPC as its primary communication protocol. Google
developed gRPC for high-performance systems. It offers several key

advantages.

gRPC uses HTTP/2 for transport. This provides multiplexed
connections. It enables bi-directional streaming. It automatically
compresses data. These features make communication fast and

efficient.

Binary serialization makes messages compact. This reduces network
load. It speeds up processing. It lowers bandwidth usage. These

benefits help Sneaky maintain high performance.

Strong typing prevents data errors. Auto-generated code reduces
bugs. Built-in security features protect data. These characteristics

make gRPC both safe and reliable.
HTTPS Security

All external communications use HTTPS. This protects data moving
between nodes. It prevents message interception. It ensures data

integrity. Standard port 443 ensures wide compatibility.
Fallback Systems

Sneaky includes automatic protocol fallback. If gRPC encounters
issues, the system switches to WebSocket. This happens
automatically. Users notice no interruption. The system maintains

operation even in restricted networks.
Network Resilience

Our protocol choices work in real-world conditions. They handle
network interruptions gracefully. They recover from errors
automatically. They adapt to different network environments. This

makes Sneaky reliable in any setting.

These communication choices support Sneaky's core principles. They

favour simplicity over complexity. They choose proven standards over

custom protocols. They ensure reliable operation without unnecessary

features.

2.4 Security and Cryptography

Elliptic Curve Cryptography (ECC)

e Handles key generation
e Manages digital signatures
e Provides strong security

e Reduces computational overhead

Post-Quantum Encryption (Optional)

e Offers quantum-resistant security
e Future-proofs the system
e Protects against emerging threats

e Maintains backward compatibility
Secure Local Storage

e TIsolates credentials
e Protects private keys
e Prevents unauthorized access

e Maintains node security

2.5 AI Integration with SneakyGPT

SneakyGPT makes blockchain data accessible to everyone. It removes
technical barriers. It enables natural communication with the

blockchain.
Natural Language Interface

Users ask questions in plain language. SneakyGPT understands

blockchain concepts. It translates queries into precise data

requests. It returns clear, understandable answers. This makes

blockchain data accessible to non-technical users.
Real-Time Learning

SneakyGPT updates with each new block. It understands the latest
chain state. It learns from new transactions. It adapts to system

changes. This ensures current, accurate responses.
Secure Operation

SneakyGPT never handles private keys. It cannot modify blockchain
data. It only reads verified information. It respects all security

boundaries. These limits maintain system security.
Business Intelligence

The system recognizes business patterns. It identifies transaction
trends. It spots unusual activities. It generates custom reports.

This helps organizations understand their blockchain usage.
Query Processing

SneakyGPT converts natural language to precise queries. It checks
multiple data points. It combines relevant information. It formats

responses clearly. Users receive exactly what they need.
Practical Benefits

Business users avoid complex query languages. Managers get quick
insights. Auditors find relevant transactions easily. Developers

save time. These benefits speed up blockchain adoption.

SneakyGPT makes blockchain practical for everyday use. It maintains
security while improving access. It helps organizations embrace
blockchain technology. It turns complex data into useful

information.

Future Developments
Future Developments

SneakyGPT is at the start of its development curve. It is the

simplest possible implementation.

Voice interaction comes first. Users will speak to their blockchain.

The blockchain will speak back. This makes blockchain easier to use.

Pattern recognition will get better. SneakyGPT will find trends by
itself. It will suggest useful questions. It will point to important

data. Your blockchain data becomes more useful.

Security watching will grow stronger. SneakyGPT will learn what
normal looks like. It will spot unusual events quickly. It will help

stop problems early. Your system stays safer.

Report creation will improve. Users will get personalized analysis.
They will receive smarter suggestions. They will see better

comparisons. Your business gains more value.

Our core principle stays the same. New features must keep things
simple. Every addition must have a purpose. All changes must protect

security. SneakyGPT will grow without complexity.

2.6 Clock Redundancy

Simple, Effective Approach

Sneaky uses a straightforward approach to clock reliability. In our

SneakyB public blockchain®:

1 www.sneakyb.au

9

http://www.sneakyb.au/

e Clock runs on Azure cloud services
e Benefits from standard Azure redundancy
e Maintains simplicity of design

e Avoids complex infrastructure
Enterprise Implementation
For enterprise deployments, clock reliability follows the same
principle of simplicity:

1. Host on your preferred cloud platform
2. Use built-in cloud redundancy features
3. Back up clock node private keys

4. Keep standard monitoring
Why This Works
Sneaky's design principles focus on:

e Simplicity over complexity
e Standard cloud features over custom solutions
e Reliable basic operations over complex redundancy

e Easy maintenance over elaborate systems

This approach keeps Sneaky:

e Light and efficient
e Easy to implement

e Simple to maintain
e Cost-effective

e Reliably functional

3. Core Architecture

3.1 Key Components

10

Sneaky's architecture centres on three main components. Each serves

specific functions for reliability, efficiency, and scalability.
Clock Node

The clock node is SneakyB’s innovative central mechanism for low-
energy transaction sequencing and verification. This centralized
clock allows SneakyB to process transactions quickly without energy-
heavy consensus. It provides an enterprise-ready solution that

lowers costs and simplifies infrastructure.

Primary Functions:

e Acts as central control point

e Sets transaction sequence

e Applies cryptographic signatures
e Verifies incoming blocks

e Ensures worker synchronization

e Eliminates consensus energy waste
Worker Nodes

Worker nodes verify transactions and create blocks in a cost-
effective, streamlined way. This setup makes SneakyB scalable and
reliable for enterprise workloads. It also uses less energy than

traditional blockchains.
Primary Functions:

e Connect senders to clock

e Collect sender transactions

e Verify transaction validity

e Package transactions into blocks
e Submit blocks for clock signing

e Maintain chain copies

11

e Share blocks across network

e Ensure network consistency

"

Initializing

Configuration Complets

¥
o Ready o

Receive Transaction—Transaction Complete - Security Exception Admin Reset Pool Threshold Met .

N) _ N y \
\ r L . ™ A l
h Monitoring chain A .
Processing Accepting transactions Paused BlockBuilding Block Accepted

Maintaining pools e

. .._\.
Block Ready Block Rejected

—
Submitting

Figure 1: Worker node state transitions showing operational states,
processing conditions, and error handling.

Sender Nodes

Sender nodes generate and submit transactions with minimal technical
demands for enterprises. Any device that can reach a worker
connection can act as a sender node. Sneaky service calls integrate
into any programming language. Sender nodes also keep local chain
copies to allow cost-efficient access and save bandwidth. This
lightweight design supports SneakyB’s goal of scalable, low-cost

data integrity for enterprises.
Core Operations:

e Generate transactions

12

e Connect to worker nodes

e Send data to chain

e Store local chain copies (shards)
e Maintain transaction footprints

e Enable local data access

3.2 Data Classes and Structures

Sneaky uses four core data classes to handle blockchain operations

and message authentication.

Credentials

+string Sender

Block i .
+string SenderEndpaint
+string ChainlD IdentityBlock +string SenderSignature
+int BlockNumber +string Senderkey
+string ChainlD
+DateTime ClockTime +string Worker
+int BlockNumber
+string BlocklD +string WorkerEndpoint
+MHodeType Type
+string WorkerGuid +string WorkerSignature
+string Endpoint
+string Hash +string Workerkey
+string ClockSignature
+string Payload +string Clock
+string[] Signatures +string ClockEndpoint
+string ClockSignature
+string ClockKey
Transaction

+string BlockGuid
+DateTime Created
+string Payload

+int EncryptionLevel
+string SenderGuid

+string Signature

Figure 2: Core data structure relationships. Shows how Block,
Transaction, IdentityBlock, and Credentials classes interact within
the system.

Block Class

The Block class forms the fundamental structure of the blockchain.

Each block contains a collection of verified transactions, uniquely

13

identified through its BlockID. The block maintains its position and
authenticity through a combination of chain ID and block number
assignments. A timestamp from the clock node ensures precise
temporal ordering, while worker information and digital signatures
verify the block's origin and validity. The block's payload contains
the actual transaction data, protected by comprehensive hash values

that ensure data integrity.
Key Components:

e Unique identifier (BlockID)
e Block number and chain ID

e Clock timestamp

e Worker information

e Hash values

e Digital signatures

e Transaction payload
C# Implementation:

public class Block

{
public string ChainID { get; set; }
public int BlockNumber { get; set; }
public DateTime ClockTime { get; set; }
public string BlockID { get; set; }
public string WorkerGuid { get; set; }
public string Hash { get; set; }
public string SHash { get; set; }
public string Payload { get; set; }
public string ClockSignature { get; set; }
public string WorkerSignature { get; set; }

}

Transaction Class

Transactions represent individual operations within the blockchain

system. Each transaction carries its own unique identifiers and

14

timestamps, establishing its place within the block structure. The
transaction payload contains the actual business data being stored,
with encryption settings determining data protection levels. Digital
signatures verify the transaction's origin, while file handling
capabilities enable diverse data storage needs. This flexible
structure allows Sneaky to accommodate various business use cases

while maintaining security and traceability.
Key Components:

e Transaction identifiers
e Creation timestamp

e Data payload

e Encryption settings

e File handling data

e Digital signatures
C# Implementation:

public class Transaction

{
public string BlockGuid { get; set; }
public string Guid { get; set; }
public DateTime Created { get; set; }
public string Payload { get; set; }
public int EncryptionLevel { get; set; }
public string ChainID { get; set; }
public string SenderGuid { get; set; }
public string WorkerGuid { get; set; }
public string SenderSignature { get; set; }
public bool IsFile { get; set; }
public string Filename { get; set; }
public string OriginalFilename { get; set; }

}

Credentials Class

Unlike the other classes, the Credentials class operates outside the

blockchain storage system, focusing instead on message

15

authentication between nodes. It plays a crucial role in securing
inter-node communications through a comprehensive set of
authentication components. When nodes communicate, each message
includes a serialized Credentials object that contains node
identifiers, network endpoints, public keys, and role-specific

digital signatures.

The Credentials class authenticates three primary message types:
Transaction Push messages from senders to workers, Block Push
messages from workers to the clock, and Block Share messages between
workers. For each message, the Credentials object includes the
necessary sender, worker, or clock credentials required for that
specific interaction. This authentication system ensures that only
authorized nodes can participate in blockchain operations,

maintaining the security of the entire system.
Message Types:

e Transaction Push (Sender - Worker)
e Block Push (Worker - Clock)
e Block Share (Worker - Worker)

Authentication Components:

e Node identifiers

e Network endpoints

e Public keys

e Digital signatures for each node type:
o Sender credentials
o Worker credentials

o Clock credentials

Each message between nodes includes a serialized Credentials object

for authentication.

16

C# Implementation:

public class Credentials

{
public
public
public
public
public
public
public
public
public
public
public
public

}

string
string
string
string
string
string
string
string
string
string
string
string

Sender { get; set; }
SenderEndpoint { get; set; }
SenderSignature { get; set; }
SenderKey { get; set; }
Worker { get; set; }
WorkerEndpoint { get; set; }
WorkerSignature { get; set; }
WorkerKey { get; set; }

Clock { get; set; }
ClockEndpoint { get; set; }
ClockSignature { get; set; }
ClockKey { get; set; }

IdentityBlock Class

Functions:

Identity blocks serve as the blockchain's trust anchors, recording

and verifying the identity of each participating node. When a node

joins the network, an identity block captures its role, network

location, and verification data. This information becomes part of

the blockchain itself, creating an immutable record of node

participation. The clock node's signature on each identity block

ensures the authenticity of node registration, maintaining the

integrity of the network's trust structure.

Key Components:

e Node identification

e Role information

e Network location

e Verification data

e Chain position

17

C# Implementation:

public class IdentityBlock

{
public string ChainID { get; set; }
public int BlockNumber { get; set; }
public DateTime ClockTime { get; set; }
public string BlockID { get; set; }
public string Hash { get; set; }
public int Type { get; set; }
public string Endpoint { get; set; }
public string Payload { get; set; }
public string ClockSignature { get; set; }
public enum NodeType { Unknown, Sender, Worker }

}

System Benefits:

e (Clear component roles

e Efficient data handling
e Strong security model

e Simple management

e Easy verification
This architecture provides:

e Focused component responsibilities
e (Clear data flow

e Strong security

e Easy maintenance

e High performance

3.3 Settings Management

Each Sneaky node maintains its own settings configuration. This

includes:

e Local preferences

e Parent node settings

18

e Network parameters
Configuration System
Sneaky uses .NET's configuration framework:

e Stores settings in appsettings.json
e Supports multiple environments

e Enables quick updates

e Maintains persistence

e Allows easy backup
Storage Implementation
File Structure:

e Primary configuration file

e Environment-specific versions
e Local overrides

e Backup copies

e Update logs
Configuration Types

Core Settings:

e API endpoints

e Block parameters
e Timeout values

e Security configs

e Network details
Management Interface
Block Explorer Features:

e Settings dashboard

19

e Visual controls
e Real-time updates
e Value validation

e Change tracking
Settings Hierarchy
Update Flow:

Clock sets master config

. Workers receive updates

1.
2
3. Senders get worker settings
4. Local values merge

5

. System syncs changes
Environment Support

Deployment Options:

e Development settings
e Production configs

e Testing parameters

e Staging values

e Custom environments
Dynamic Updates

System Features:

e Automatic reload

e Live configuration
e No restart needed

e Instant propagation

e Version tracking

Technical Benefits:

20

e Reliable storage
e Easy management
e Quick updates

e (Clear hierarchy

e Strong consistency
System Advantages:

e Simple configuration
e Flexible control

e Fast deployment

e Easy maintenance

e Network synchronization

3.4 Worker Node Operations

Worker nodes form the backbone of Sneaky's transaction processing.
Each worker manages a critical set of operations. These operations

keep the blockchain running smoothly.
Transaction Management

Workers receive transactions from sender nodes. They verify each
transaction's authenticity. They check digital signatures against
the blockchain record. Valid transactions enter the worker's

transaction pool. Invalid transactions trigger security alerts.
Block Building

Workers monitor their transaction pools. When enough transactions
accumulate, the worker builds a new block. It arranges transactions
in chronological order. It adds its own signature to the block. It

then submits this block to the clock node for verification.

Network Communication

21

Workers maintain connections with multiple system components. They
listen for new transactions from senders. They submit blocks to the
clock node. They share verified blocks with other workers. This
communication pattern keeps the network synchronized without complex

consensus mechanisms.
Chain Maintenance

Each worker keeps a copy of the blockchain. It adds new blocks as
they are verified. It shares blocks with workers that rejoin the
network. It maintains transaction history for its senders. This

local storage enables quick verification and response.
State Management

Workers track their own operational state. They monitor their
connection to the clock. They manage their transaction pools. They
track their block building status. This self-monitoring ensures

reliable operations.

Worker nodes simplify blockchain operations. They eliminate the need
for network-wide consensus. They provide clear transaction and block
handling. They maintain system consistency through simple, proven

methods.

4. Services Layer and Technical Implementation

The SneakyB services layer is designed to ensure secure, efficient,
and scalable transaction handling. Each node type—Clock, Worker, and
Sender—operates with distinct functions and interactions, structured
to support SneakyB’s focus on energy efficiency, enterprise-
readiness, and cost-effectiveness. SneakyB service calls are
designed to integrate with any programming language, maximizing

accessibility across different enterprise environments.

22

Clock Service

Role: The Clock Service is SneakyB’s authoritative timekeeper and

central node for transaction sequencing. It ensures a consistent

transaction order across the network by timestamping and signing
each block.

Functions:

Receive Blocks: Accepts completed blocks from Worker nodes for

sequencing.

Validate Blocks: Checks each block for integrity and
compliance with blockchain rules before it is added to the

sequence.

Timestamp and Sign Blocks: Adds a precise timestamp and
digital signature to each block, ensuring its place in the

transaction sequence.

Return Signed Blocks: Sends the signed and sequenced blocks

back to Worker nodes to ensure consistency across the network.

Register Workers: Registers Worker nodes and issues an
IdentityBlock to confirm their identity and integration with

the network.

C# Implementation?:

public interface IClockService

{

Task<Block> PushBlockAsync(Block block);

2 This is a basic implementation. There are more methods in our production
classes.

23

Task<IdentityBlock> RegisterWorkerAsync (Credentials
credentials);

Task<List<Block>> WorkerHandshakeAsync (Credentials
credentials);

Task<Instruction> Exception (Error error);

}

Worker Service

Role: The Worker Service acts as an intermediary between sender
nodes and the Clock Service. It manages transaction validation,

block formation, and network consistency.

Functions:

Receive Transactions: Accepts transactions from sender nodes,
validating each one before adding it to the pool of
transactions.

e Assemble Blocks: Batches validated transactions into blocks,
optimizing network resources by reducing the frequency of
communication with the Clock node.

e Sync with Peers: Shares completed blocks with other Worker
nodes to maintain a consistent chain state across the network,
ensuring redundancy and alignment.

e Register Senders: Registers sender nodes, issuing an

IdentityBlock for each new sender to establish an initial

point of reference within the chain.
C# Implementation3:

public interface IWorkerService

{

3 This is a basic implementation. There are more methods in our production
classes.

24

Task<bool> PushTransactionAsync (Transaction transaction);
Task SyncBlockAsync (Block block);

Task<IdentityBlock> RegisterSenderAsync (Credentials
credentials);

Task<List<Block>> SenderHandshakeAsync (Credentials
credentials);

Task<Instruction> Exception (Error error);

}

Sender Nodes

Currently, there is no sender service. Instead, senders initiate
transactions and receive updates in reply to worker method calls and

in their worker node handshake at startup.
Summary

This services layer design is optimized for SneakyB’s goals of
simplicity, low-cost operation, and security. Each service operates
within a limited role to maintain an efficient, secure, and
enterprise-ready infrastructure that minimizes resource use and

supports scalability across diverse environments.

5. Installation and Setup

5.1 Node Installation

Each node type requires specific installation procedures. Custom
installers handle environment setup, configuration, and node

interaction protocols.
Clock Node Installation

Setup Process:

e Creates local blockchain instance
e Initializes system parameters

e Generates unique keypair

25

e Stores private key securely
e Embeds public key in genesis block

e Prepares network management systems

Post-Installation State:

e Ready for network management
e Prepared for block verification

e Enabled for system monitoring
Worker Node Installation
Components:

e Deploys block explorer

e Prepares clock registration
e Generates node keypair

e Sets up security protocols

e Configures transaction handling
Ready State:

e Prepared for clock registration
e Configured for transaction processing

e Enabled for block management
Sender Node Installation
Requirements:

e Sets up worker registration
e C(Configures gateway access
e Prepares transaction systems

e Establishes security protocols

Registration Process:

26

e First worker contact triggers registration
e System validates credentials

e Node joins transaction network

5.2 Clock Setup

Clock Configuration Steps:

. Access local block explorer
. Sign in with default credentials
. Complete initial setup wizard

. Enable worker token generation

vi A W N BB

. Configure security parameters

Operational State:

e Ready for worker registration
e Enabled for token generation
e Prepared for block signing

e Configured for network management

5.3 Worker and Sender Registration

Worker Registration Process
Steps:

Access clock block explorer

. Submit worker access token

1.
2
3. Complete verification process
4. Receive identity confirmation
5

. Join blockchain network
System Actions:

e (Clock verifies token

e Creates worker identity block

27

e Enables block submission

e Grants chain interaction rights
Sender Registration Process
Registration Methods:

e API-based registration

e Block explorer token submission
System Flow:

. Sender submits credentials
. Worker verifies access rights
. Worker shares identity with clock

. Clock creates sender identity block

ui A W N R

. Sender gains transaction rights
Post-Registration State:

e Ready for transaction submission
e Enabled for chain interaction
e Configured for data transfer

e Prepared for shard maintenance
Key Benefits:

e Secure node onboarding
e C(Clear registration paths
e Strong identity verification

e Simple setup process

5.4 Payload Agnosticism

Sneaky handles any data format:

e Stores all data as strings

28

e Accepts any payload format
e Supports serialized JSON
e Handles raw text

e Enables flexible business use
Technical Benefits:

e Format independence

e Universal compatibility
e Simple data validation
e Easy content parsing

e Flexible implementation

5.5 Transaction Processing Flow

Sneaky processes transactions through a series of clear, verifiable

steps. Each step ensures both security and efficiency.
Initial Transaction Creation

A sender node begins each transaction. It creates a Transaction
object containing the business data payload. The sender signs this
object with its private key. This signature proves the transaction's
origin. The sender then packages this transaction with its

credentials for worker verification.
Worker Node Processing

The worker node serves as the transaction's first verification
point. It checks the sender's signature against the sender's public
key from the blockchain. This confirms the sender's identity. The

worker then validates the transaction format and data structure.

Valid transactions enter the worker's transaction pool. Here they

wait for block creation. Invalid transactions trigger security

29

alerts. The worker node monitors its pool size against the system's

block length setting.
Block Creation

When enough transactions fill the pool, the worker creates a new
block. The worker arranges transactions in chronological order
within the block. It adds its own signature to prove block origin.
The worker then sends this block to the clock node for final

verification.
Clock Node Verification

The clock node provides Sneaky's central verification. It first
checks the worker's signature using the worker's public key from the
blockchain. This proves the block came from an authorized worker.

The clock then examines each transaction's sender signature.

After verification, the clock adds its timestamp and signature. This
timestamp establishes the block's permanent position in the chain.
The clock's signature seals the block's authenticity. The clock then

returns the signed block to the worker.
Chain Integration

The worker adds the signed block to its local chain copy. It shares
this block with other worker nodes. This keeps all workers
synchronized. The worker then confirms successful processing to the

original senders.
Error Handling

Sneaky manages errors without disrupting the chain. Invalid
signatures trigger security alerts. Malformed transactions receive
rejection notices. Network issues trigger automatic retries. This

creates a robust, reliable system.

30

Each step in this process serves a specific purpose:

e Sender signatures prove data origin

e Worker verification prevents invalid transactions
e Clock signatures establish order

e Multiple checks ensure security

e C(Clear confirmations maintain reliability

This straightforward approach creates a secure, efficient
transaction system. It eliminates the complexity of traditional
blockchain consensus. It maintains data integrity through simple,

proven methods.

6. Block Handling and Propagation

6.1 Block Creation

Initiation Conditions
Worker nodes start block creation when:

e Transaction pool reaches BlockLength
e Clock settings trigger threshold

e Network conditions allow
Block Assembly Process
Worker Steps:

. Collects validated transactions

. Creates JSON transaction collection
. Builds Block object

. Signs completed block

vi A W N R

. Sends to clock for mining

Block Components:

31

Transaction collection
Worker signature

Block metadata
Creation timestamp

Previous block reference

Block Pool Management

Worker Actions:

Stores block in local pool
Awaits clock confirmation
Maintains block status
Tracks pending blocks
Updates pool state

6.2 Clock Verification and Mining

Verification Process

Clock Steps:

vi A W N R

. Receives block from worker

. Verifies worker signature

. Checks transaction signatures
. Validates block structure

. Confirms block sequence

Processing Outcomes

Valid Blocks:

32

Enter main chain
Receive clock signature
Get propagation clearance

Update chain state

Invalid Blocks:

e Trigger error protocols
e Generate system alerts
e Create error logs

e Update security status
Block Distribution

Clock Actions:

e Returns signed block

e Shares missing blocks

e Updates worker settings
e Distributes worker list

e Maintains synchronization

6.3 Worker Propagation

Block Distribution
Worker Steps:

Receives mined block

. Updates local chain

1.

2

3. Clears block from pool

4. Shares with other workers
5

. Updates block status
Network Management
Propagation Handling:

e Tracks successful shares
e Notes failed distributions
e Manages retry attempts

e Updates worker status

33

e Maintains network state
Shard Management
For Enabled Systems:

e Updates sender shards

e Tracks shard status

e Maintains footprints

e Ensures data consistency

e Validates updates
System Benefits:

e (Clear block flow

e Strong verification
e Reliable propagation
e Consistent updates

e Complete tracking
Key Advantages:

e Efficient processing
e Secure verification

e Reliable distribution
e Easy monitoring

e Strong consistency

6.4 Worker Reachability

Worker nodes require guaranteed network connectivity. Sneaky
implements an intelligent connection system with automated protocol

selection and monitoring.

Connection Protocol Stack

34

Primary Layer: gRPC over HTTPS

Default Connection:

e Direct gRPC communication
e TLS 1.3 encryption

e HTTP/2 protocol

e Binary serialization

e Automatic compression

Performance Benefits:

e Minimal latency

e Low bandwidth usage
e Quick serialization
e Efficient streaming

e Small headers
Fallback Layer: WebSocket
Automatic Failover:

e Triggers on gRPC failure

e Uses standard port 443

e Maintains persistent connection
e Enables bidirectional flow

e Supports SSL/TLS
Smart Routing System
Dynamic DNS Management
Implementation:

e C(Cloud-based DDNS service

e Automatic IP updates

35

e Sub-minute propagation
e Geographic optimization

e Health monitoring

Benefits:

e Handles IP changes

e Reduces downtime

e Optimizes routing

e Improves reliability

e Simplifies management
Intelligent Proxy Layer
Architecture:

e NGINX reverse proxy

e Automatic SSL handling
e Smart load balancing

e Connection pooling

e Request queueing
Security Features:

e DDoS protection

e Rate limiting

e Request filtering
e Access control

e Traffic monitoring
Connection Optimization
Protocol Selection

Automated Process:

36

. Tests direct gRPC
. Measures connection quality
. Checks alternative routes

. Selects optimal protocol

vi A W N R

. Monitors performance
Decision Factors:

e Network latency

e Connection stability

e Bandwidth availability
e Security requirements

e Corporate policies
Performance Monitoring
Continuous Checks:

e latency measurement

e Throughput tracking

e Error rate monitoring
e Protocol performance

e (Connection stability
Response Actions:

e Automatic protocol switching
e Route optimization

e Load redistribution

e Alert generation

e Performance logging
Security Implementation

Connection Security

37

Required Features:

e Mutual TLS authentication
e Certificate validation

e Protocol encryption

e Traffic inspection

e Threat detection
Audit System

Security Tracking:

e Connection logging
e Protocol changes

e Performance metrics
e Security events

e Access attempts

Enterprise Integration

Network Configuration
Deployment Options:

e (Corporate proxy support
e Firewall compatibility
e DMZ deployment

e VPN integration

e (Cloud connectivity
Management Interface
Control Features:

e Protocol selection

e Performance metrics

e Security settings
e Route management

e Alert configuration
Key Improvements:
1. Automated protocol selection replaces manual TURN setup
2. Enhanced security layers
3. Performance-based routing
4. Continuous monitoring
5. Enterprise-ready features
System Benefits:

e Reduced complexity
e Better performance
e Stronger security
e Easier management

e Higher reliability

7. Security and Encryption

39

Raw [t

ECC Emcryption

£l

Pest - Qyuarrtuen Layer

SresloyHeys Escrow

Verification Layer
dentity Check
Signature Werification

*

Authorization Check

Figure 3: Comprehensive security stack showing encryption Llayers,
verification processes, and protocol security measures.

7.1 ECC and Post-Quantum Readiness

Core Encryption

Sneaky uses Elliptic Curve Cryptography (ECC) as its foundation. ECC
provides strong security with small key sizes. Each node creates its
own ECC key pair. The private key stays secure on the node. The
public key goes into the node's identity block. Every transaction
needs a digital signature. Every block needs two signatures. The
sender signs each transaction. The worker signs each block. The
clock provides the final signature. ECC makes these signatures fast
and secure. Small key sizes keep data transfer efficient. Processing
overhead stays low. The system maintains security without

complexity.

40

Elliptic Curve Cryptography (ECC):

e Provides primary security layer
e Generates secure keypairs

e Signs all transactions

e Protects node identities

e Ensures data integrity
Technical Benefits:

e Strong security level
e Efficient processing
e Small key sizes

e Fast verification

e Low resource usage
Post-Quantum Features

Optional Protection:

e Resists quantum attacks
e Adds security layer

e Future-proofs data

e Maintains compatibility

e Enables easy upgrades

Implementation Options:

e Full quantum resistance
e Hybrid protection

e Selective encryption

e Gradual migration

e Custom security levels

Post-Quantum Features

41

Sneaky includes code for future quantum computer protection. This
feature is not active in our first release. It will become available

in a future update. The feature will be optional for chain owners.

Quantum computers pose an important security challenge. Traditional
computers work with bits. Quantum computers use quantum bits or
qubits. Qubits can process certain mathematical problems
exponentially faster. This includes the math behind current
encryption. A powerful quantum computer could break today's
encryption methods. It could decode encrypted messages. It could

forge digital signatures.

This threat remains theoretical. Current quantum computers are too
small. They cannot break encryption yet. Experts estimate this may
change within ten years. Post-quantum cryptography prepares for this
uncertain future. It includes maths problems that resist quantum
attacks. This keeps current data safe even against future quantum

computers.

Performance Impact:

Processing speed drops by 50%

Storage space doubles

Memory usage increases by 40%

Network traffic grows by 60%
Organizations should consider:

e Current security threats

e Performance requirements

e Storage capacity

e Available processing power

e Business security policies

42

The upgrade process is straightforward for chain owners and

transparent to users. The clock node initiates quantum protection.
It re-encrypts the existing chain block by block. Workers maintain
both chains during transition. Normal service continues throughout.

The process typically takes one hour per 10,000 blocks.

We recommend organizations evaluate their needs carefully. Current
encryption remains secure against today's threats. Post-quantum
features can wait if performance matters more. Each chain owner

makes this choice based on their requirements.

7.2 Identity Verification

Credential Management
System Components:

e Credentials class handling
e Public key infrastructure
e Signature verification

e Identity tracking

e Access control
Node Authentication
Verification Process:

. Checks node credentials
. Validates signatures
. Confirms identity blocks

. Verifies permissions

vi A W N R

. Enables system access
Security Layers

Protection Mechanisms:

43

Multi-level verification
Cryptographic proofs
Identity confirmation
Access control

Audit logging

Operational Security

System Features:

Continuous monitoring
Real-time verification
Automated checks

Alert systems

Security logging

Key Advantages:

Complete protection
Strong verification
Clear audit trails
Future readiness

Simple management

Security Benefits:

8. Network Reliability and Worker Management

44

Robust encryption
Reliable verification
Quantum readiness
Easy administration

Full auditability

Application Layer

gRPC Services Web5ocket Fallback

.

\
Sy [rt Lay 7
_Jransport Layer

TL5 1.3

l

TCR/IP

Netwogk Layer

Smart Routing

l

Firewall Rules

Figure 4: Network protocol implementation showing communication
Layers, security protocols, and routing systems.

8.1 Worker Expiry and Ping Mechanism

Worker Status Management
Clock Functions:

e Maintains worker registry
e Tracks service addresses
e Monitors node status

e Manages timeouts

e Controls worker states
Timeout Handling
Process Flow:

1. Clock detects inactivity

45

. Initiates ping sequence
. Awaits worker response

. Updates worker status

vi b W N

. Logs state changes
Status States

Worker Conditions:

e Active: Fully operational
e Pending: Awaiting response
e Inactive: No response

e Expired: Timeout reached

e Blocked: Security issue
Recovery Process
Reactivation Steps:

Worker pushes new block

. Clock verifies identity

1.
2
3. Status returns to active
4. Network updates list

5

. Operations resume

8.2 Footprint Consistency

Chain Maintenance
Worker Responsibilities:

e Stores local chain copy
e Maintains block sequence
e Verifies transactions

e Updates chain state

e Ensures data integrity

46

Verification Process
Chain Checks:

e Block sequence validity
e Transaction verification
e Signature confirmation

e Hash consistency

e Timestamp order
Data Access
Availability Features:

e Complete chain history
e Transaction records

e Block verification

e Audit capability

e Quick retrieval
Consistency Management
System Actions:

e Regular state checks

Automatic updates

Error detection

Data validation

Sync maintenance
Operational Benefits:

e High availability
e Strong consistency
e Quick recovery

e C(lear status tracking

47

e FEasy management

Network Advantages:

e Reliable operations
e Fast status updates
e Simple monitoring

e C(Clear worker states

e Strong data integrity

9. AI and Automation in Sneaky

9.1 SneakyGPT Integration

Core Functionality
Query Capabilities:

e Natural language processing
e Blockchain data access

e Real-time information

e Complex query handling

e Custom result formatting
Technical Implementation
System Components:

e Fine-tuned GPT model
e Blazor interface

e API connections

e Data processors

e Query handlers
Data Access

Query Features:

48

e Direct chain access
e Real-time updates

e Custom filtering

e Pattern matching

e Result formatting
Security Monitoring
AI Functions:

e Activity pattern analysis
e Anomaly detection

e Threat identification

e Alert generation

e Risk assessment
Business Intelligence

Analysis Features:

e Transaction patterns
e Usage statistics

e Performance metrics
e Trend analysis

e Custom reporting

9.2 Exception Handling Automation

Error Processing
System Actions:

e Detects transaction errors
e Tdentifies block issues
e Logs exceptions

e Triggers responses

49

e Updates status
Automated Responses
System Steps:

. Identifies issue type
. Applies response rules
. Executes actions

. Records outcomes

vi A W N R

. Updates systems
Error Categories
Handled Types:

e Transaction failures
e Block errors

e Network issues

e Security alerts

e Protocol violations
Escalation Protocol
Process Flow:

. Detects critical issues

. Evaluates severity

1
2
3. Notifies administrators
4. Tracks resolution

5

. Updates documentation
Monitoring Systems

Automation Features:

e Real-time tracking

50

e Status updates
e Performance monitoring
e System health checks

e Resource management

Operational Benefits:

e Quick issue detection
e Automated responses

e Clear tracking

e FEasy management

e Strong documentation
System Advantages:

e Intelligent monitoring
e Fast response times

e Reliable handling

e C(Clear processes

e Full automation

10. Open Source and Community Engagement

10.1 Apache 2.0 Licensing

License Features
Key Permissions:

e Free code use

e Modification rights
e Distribution freedom
e Patent rights

e Commercial use

51

License Requirements

User Obligations:

e Maintain copyright notices
e Document changes

e Include license copy

e State modifications

e Preserve attributions
Legal Protection
Built-in Safeguards:

e Patent protection

e Trademark rights

e Liability limitations
e Warranty disclaimers

e Usage clarity

10.2 Community Contributions

Development Guidelines
Code Standards:

e Style requirements
e Documentation rules
e Testing protocols

e Review processes

e Quality checks
Contribution Process
Submission Steps:

1. Fork repository

52

. Create branch
. Make changes

. Submit pull request

vi b W N

. Address reviews
Code Review
Quality Checks:

e Style compliance

e Test coverage

e Performance impact
e Security review

e Documentation quality
Technical Standards
Development Requirements:

e (Clean code practices
e Comprehensive testing
e Clear documentation

e Efficient algorithms

e Security awareness
Community Support
Available Resources:

e Technical guides
e Development tools
e (Code examples

e Best practices

e Support channels

Collaboration Tools

53

Platform Features:

e Issue tracking

e Version control

e Documentation wiki
e Discussion forums

e Project boards
Development Benefits:

e C(Clear guidelines

e Ready support

e Easy collaboration
e Quality control

e Fast feedback

Community Advantages:

e Open development

e Shared knowledge

e Continuous improvement
e C(Clear processes

e Strong governance

11. Obvious Best Practice

Sneaky implements recognized industry standards. At the same time,
we seek to identify best practise. Each component follows clear,

efficient, and secure design principles.

11.1 Technology Selection

Core Technologies

C# and .NET:

54

Enterprise-grade stability
High performance base
Strong type safety
Extensive libraries

Modular architecture

Front-End Development

Blazor Features:

Fast load times
Responsive interfaces
Server-side rendering
Component reuse

Browser compatibility

Data Storage

SQLite Benefits:

Reliable performance
Simple maintenance
Zero configuration
File-based storage

ACID compliance

Communication

gRPC Advantages:

55

Low latency

Binary protocols
Strong typing
Auto-generated code

Bidirectional streaming

11.2 Security Implementation

Sneaky implements security through multiple complementary layers.
Each layer serves a specific purpose. This approach maintains system

simplicity and performance.
Core Encryption Methods

Sneaky builds its security foundation on established cryptographic
standards. Elliptic Curve Cryptography (ECC) provides the primary
key generation mechanism. This choice balances strong security with
efficient processing. Each node generates its keys using ECC. This
enables fast and secure digital signatures. The system employs
secure hash functions to maintain data integrity. Cryptographically

secure random number generation supports key operations.
Data Protection Strategy

The system protects data through end-to-end encryption between
nodes. Each node stores its private keys in isolated secure storage.
This prevents unauthorized access. Access controls operate at both
node and data levels. The system maintains comprehensive audit logs
of all security events. This enables quick detection of potential
issues. Automated intrusion detection monitors for unusual patterns.

It also identifies unauthorized access attempts.
Future-Ready Security

Sneaky includes optional quantum-resistant encryption capabilities.
This feature helps enterprises prepare for future security threats.
It maintains current performance levels. The system supports
flexible algorithm selection. This enables updates as security
standards evolve. Migration paths ensure smooth transitions between

security protocols. Version control tracks all security

56

configuration changes. This maintains system stability during

updates.

All security features maintain Sneaky's core principle of
simplicity. Each mechanism serves a clear purpose. The system avoids
unnecessary complexity. It ensures robust protection. This approach
delivers enterprise-grade security without complex blockchain

overhead.

11.3 Content Management

Data Handling

Content Features:

Format independence
e String-based storage
e Flexible payloads

e Easy validation

e Simple parsing
Business Adaptability
System Benefits:

e Multiple use cases
e Format flexibility
e Easy integration

e Simple adoption

e (Clear workflows

11.4 System Architecture

Module Design

Structure Benefits:

57

e C(Clear role separation
e Simple maintenance

e Easy scaling

e Quick debugging

e Strong isolation
Component Roles
Clear Boundaries:

e Clock functions

e Worker tasks

e Sender operations
e Data flow

e Security checks

58

Mode Companents

Sender Node

Sender Service

§RPC

Worker Hode
L

- Worker Service
Shard Storage

SRPC

Clock Node
L

Transaction Pool Clock Service

] L]

Block Pool Validatos

L] L]

Local Storage Local Storage

Figure 5: Detailed architecture showing internal components of each
node type. Demonstrates storage systems, service layers, and
communication protocols.

11.5 Error Management

System Monitoring
Key Features:

e Automated logging

e Real-time alerts

e Issue tracking

e Performance monitoring

e Resource management
Problem Resolution

Process Flow:

59

. Error detection
. Classification
. Response selection

. Action execution

vi A W N R

. Resolution tracking

11.6 System Growth

Scalability Features
Design Elements:

e Efficient protocols

e Resource optimization
e Load handling

e Easy expansion

e Performance monitoring
Future Planning
Growth Support:

e Modular design
e Version control
e Update paths

e Feature flags

e Backward compatibility

11.7 Community Focus

Open Development
Key Aspects:

e (Clear documentation
e Simple navigation

e Easy contributions

60

e Version tracking

e Knowledge sharing
Code Quality

Standards:

e Style guidelines

e Testing requirements
e Review processes

e Security checks

Performance metrics

12. Conclusion

12.1 Summary of Innovations

Technical Achievements

Core Innovations:

e High-performance processing
e Strong security model

e Minimal energy usage

e Clock-based architecture

e Rapid transaction handling
Architecture Benefits
Key Advantages:

e No consensus overhead

e Quick block verification
e Simple node management

e C(Clear security model

e Easy scaling

61

System Features
Technical Capabilities:

e Content-agnostic storage
e Post-quantum readiness

e Open-source access

e AI integration

e Natural language queries

12.2 Future Directions

Scaling Improvements
Planned Updates:

e Multi-clock support
e Enhanced sharding

e Increased throughput
e Better load handling

e Performance optimization
Technical Roadmap
Development Focus:

e Security enhancements
e Protocol updates

e Tool improvements

e API expansion

e Feature additions
Growth Areas
Future Capabilities:

e Advanced AI features

62

e Voice interactions
e Custom explorers
e Industry tools

e Integration options
System Evolution
Development Goals:

e Maintain simplicity
e Enhance security

e Improve performance
e Add features

e Support growth

Get Started
For technical discussions or development inquiries:

e Email: sneakylabs@proton.me

e Documentation: [Available on request]

e Code access: [Repository details]

63

mailto:sneakylabs@proton.me

Bibliography

Bernstein, D. J., Buchmann, J., & Dahmen, E. (2009). Post-Quantum
Cryptography. Springer.

Berkhout, F., Smith, A., & Stirling, A. (2004). Socio-Technological
Regimes and Transition Contexts. In B. Elzen, F. W. Geels, & K.
Green (Eds.), System Innovation and the Transition to

Sustainability. Edward Elgar Publishing.

Boneh, D., & Shoup, V. (2020). A Graduate Course in Applied
Cryptography. Retrieved from https://toc.cryptobook.us.

Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies.

Oxford University Press.

Buterin, V. (2015). On Sharding Blockchains. Retrieved from
https://github.com/ethereum/wiki/wiki/Sharding-FAQs.

Castro, M., & Liskov, B. (1999). Practical Byzantine Fault
Tolerance. Proceedings of the Third Symposium on Operating Systems

Design and Implementation, 173-186.

Deloitte Insights. (2019). Breaking Blockchain Open: Deloitte's 2019
Global Blockchain Survey. Retrieved from

https://www2.deloitte.com/global/en/insights/topics/understanding-

blockchain-potential.html.

Drescher, D. (2017). Blockchain Basics: A Non-Technical Introduction

in 25 Steps. Apress.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning.
MIT Press.

IBM Institute for Business Value. (2018). Building your Blockchain
Advantage: How to Start Planning for Blockchain's Business Impact

Today. IBM.

64

https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://www2.deloitte.com/global/en/insights/topics/understanding-blockchain-potential.html
https://www2.deloitte.com/global/en/insights/topics/understanding-blockchain-potential.html

Jiang, P., Wu, J., Chen, J., & Zhao, S. (2019). Blockchain-Based
Distributed Energy Trading for Sustainable Development: A Game-
Theoretic Approach. IEEE Transactions on Systems, Man, and

Cybernetics: Systems.

Kwon, J. (2014). Tendermint: Consensus without Mining. Retrieved

from https://tendermint.com/static/docs/tendermint.pdf.

Lamport, L., Shostak, R., & Pease, M. (1982). The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Systems,

4(3), 382-401.

Li, X., Jiang, P., Chen, T., Luo, X., & Wen, Q. (2020). A Survey on
the Security of Blockchain Systems. Future Generation Computer

Systems, 107, 841-853.

Mougayar, W. (2016). The Business Blockchain: Promise, Practice, and

the Application of the Next Internet Technology. Wiley.

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
Retrieved from https://bitcoin.org/bitcoin.pdf.

National Institute of Standards and Technology. (2020). Post-Quantum
Cryptography: NIST's Plan for the Future. Retrieved from
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

Peters, G. W., Panayi, E., & Chapelle, A. (2015). Trends in
Blockchain Technology and Security. In Handbook of Blockchain,
Digital Finance, and Inclusion (Vol. 1, pp. 241-265). Academic

Press.

Pongnumkul, S., Siripanpornchana, C., & Thajchayapong, S. (2017).
Performance Analysis of Private Blockchain Platforms in Varying
Workloads. 26th International Conference on Computer Communications

and Networks (ICCCN), 1-6.

65

https://bitcoin.org/bitcoin.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Raymond, E. S. (1999). The Cathedral and the Bazaar: Musings on
Linux and Open Source by an Accidental Revolutionary. 0'Reilly

Media.

Risius, M., & Spohrer, K. (2017). A Blockchain Research Framework:
What We (Don't) Know, Where We Go from Here, and How We Will Get
There. Business & Information Systems Engineering, 59(6), 385-409.

Tapscott, D., & Tapscott, A. (2016). Blockchain Revolution: How the
Technology Behind Bitcoin is Changing Money, Business, and the

World. Portfolio.

Tanenbaum, A. S., & van Steen, M. (2007). Distributed Systems:

Principles and Paradigms. Prentice Hall.

Von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community,
Joining, and Specialization in Open Source Software Innovation: A

Case Study. Research Policy, 32(7), 1217-1241.

66

